

Maximizing Vitamin Retention in Extruded Dry Pet Food

Shiguang Yu, PhD, MBA

Global Director – Pet Nutrition & Applications

implied. In no event shall DSM be liable for any damages arising from the reader's relitance upon, or use of, these materials. The reader shall be solely responsible for any interpretation or use of the material contained herein. The content of this document is adjusted to change virtuour further notained. Please contact your local DSM representative for more details. All trademarks listed in this document are either registered trademarks of DSM in The Netherlands and/or other countries upless indicated otherwise and may not be used without the registered trademarks of DSM in The Netherlands and/or other countries upless indicated otherwise and may not be used without the prior written crossest of DSM.

Overview

- Vitamins
- Vitamin product forms
- Vitamin stability during extrusion
- Maximizing vitamin retention

Vitamins

~30% of cat essential nutrients (13/44)

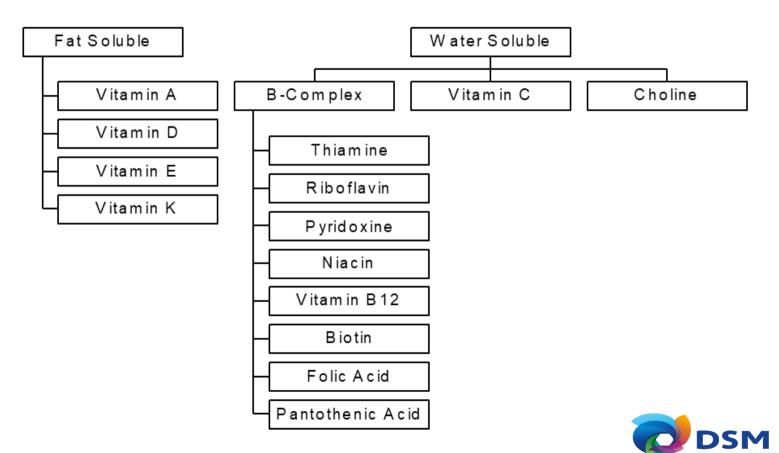
<0.012% by weight in a complete cat food on dry matter

3.2.3. Recommended nutrient levels for complete cat food TABLE III- 4_a . Unit per 100 g dry matter (DM)

					Hazimum		
		Adult base	d on MER of	(L) = EU logal limit			
		75 kcal/kg ¹⁰¹	100 kral/kg ^{LU}		(N) = nutritional		
Protein*		22.10	25.00	28.00(30.00			
Arginine*	2.	1.30	1.00	1.07/1.11	Growth:	3.50 00	
Histicline	ž.	0.25	0.26	0.33			
holoucine	1.	D.ST	0.42	0.54			
Leucine	z	1.36	1.02	1.28			
Lysine*		0.45	0.34	0.85			
Methionine*	ž	0.23	0.17	0.44	Growth:	1.30 00	
Methionine+cystine*	g.	0.45	0.34	0.88			
Phonylalanine	8	0.53	0.40	0.50			
Phonylalanine+tyroxine*	8	2.04	1.53	151			
Threonine		0.60	0.52	0.65			
Tryptophen*	8	0.17	0.13	0.36	Growth:	1.TD NI	
Valor		0.68	0.51	0.64	GROWST.	1.10 (6)	
	8	0.27	0.51	0.04			
Taurine kanned pet food? Taurine klry pet food?	8	0.27	0.20	0.25			
	8						
Fat*	- 8	9.00	9.00	9.00			
Linoleic acid (iù-G)	8	D.E.T	0.50	0.55			
Arachidonic acid (ui-G)	mg	8.00	6.00	20.00			
Alpha-lindenic acid (22-3)*	8			0.02			
EPA + DHW (42-30*	8	-	-	10.0			
Minorals							
Caldum"	8	0.531	0.401	1.00 c			
Phaspharus*		0.354	0.261	D.841¢	1		
Ca/Pratio			1/1		Growth: Adult	1.5/1.06 2/1.00	
Potassium	8.	D.BD	0.60	0.00			
Sodium*	8.	0.10	0.08	0.36			
Chloride	8	0.15	0.11	0.34			
Magnesium"	8.	0.05	0.04	0.05			
Trace elements*							
Copper*	mg	DET	0.50	1.00		2.80(1)	
lodine*	mg	0.17	0.13	0.38		1.10 (L)	
Iron*	mg	33.70	8.00	8.00		68.18 [L]	
Manganese	mg	DET	0.50	1.00		17.00 (1)	
Solonium (wet clots)	HE	35.01	36.00	30.00		56.80 L)4	
Selenium (dry diets)	HE	28.01	21.00	30.00		56.80 [L]4	
Zinc	mg	30.00	7.50	7.50		22.30 (1)	
erries	_						
Vitarnin A*	III	444.00	223.00	901.00	Adult & Growth: Reproduction:	40 000 NI 22 222 06	
Vitamin D*	III	33.30	25.00	28.00		227 lL) 1000 00	
Vitamin E*	III	5.0T	2.50	3.80			
Vitamin III. (Thiamina)*	mg	0.50	0.44	0.55			
Vitamin II2 (Riboflas inl	me	D.AD	0.32	0.32			
Vitamin IIS (Pantothenic acid)	mg	D.TT	0.58	0.57			
Vitamin BS (Pyridosins)*	mg	0.33	0.25	0.25			
Vitamin B12 (Cyanocobalamin)*	146	2.75	1.76	1.80			
Vitamin III Niacini*		4.21	2.20	3.20			
Vitamin II I Niacini* Vitamin III Folic acidi*	mg	4.21 101.00	3.20 75.00	75.00			
	HE	100.00 8.00	75.00	75.00			
Vitamin 87 (Biotin)* Cholme	HE mg	320.00	6.00 240.00	7.00 340.00			

What is a Vitamin?

- Organic compounds
- Essential to metabolism
- Small amount required
- Body can't make or make enough
- Obtain vitamins through food


Vitamin D deficiency http://katiediazz.myblog.arts.ac.uk/2016/ 02/21/research-sunday-rickets-disease/

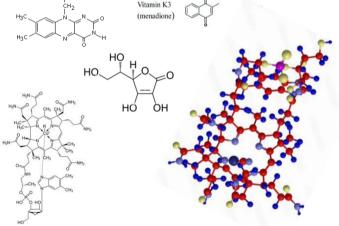
http://www.dsm.com/markets/anh/en_US/Compendium/companion_animals/thiamin.html

Vitamins

Basic Vitamin Compounds

- Vitamin A Retinol
- Vitamin D Cholecalciferol (D₃), Ergocalciferol (D₂)
- Vitamin E Alpha-tocopherol
- Vitamin K Phylloquinine(K₁), Menaquinones (K₂), Menadione(K₃)

CH₂ OH


Menadione(K₃)

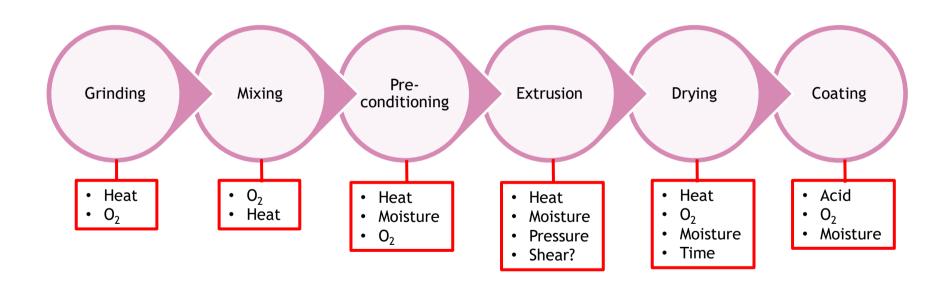
Vitamin C

Vitamin K1
(phylloquinone)

Vitamin K2

- Vitamin B₁ Thiamine
- Vitamin B₂ Riboflavin
- Vitamin B₆ Pyridoxine
- Pantothenic Acid
- Biotin
- Folic Acid
- Vitamin C Ascorbic Acid
- Vitamin B₁₂ Cyanocobalamin
- Niacin/Niacinamide

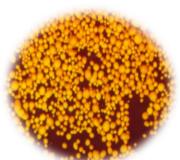
They may not be suitable forms for pet food applications


Factors Affecting the Stability of Vitamins in Basic Forms

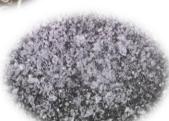
Vitamin	Heat	Oxidation	Moisture	Light	Acid	Alkali	Radiation
Vitamin A	++	++	+	++	+	0	++
Vitamin D ₃	+	++	+	++	+	+	+
Vitamin E	0	+	0	+	0	+	+
Vitamin K ₃	++	+	++	++	0	++	0
Thiamine	++	+	+	+	0	++	0
Riboflavin	0	0	+	++	0	++	+
Pyridoxine	++	0	+	+	+	+	+
Vitamin B ₁₂	++	+	+	+	++	++	+
Pantothenic acid	+	0	+	0	++	++	0
Niacin	0	0	0	0	0	0	0
Biotin	+	0	0	0	+	+	0
Folic acid	++	0	+	+	+	+	++
Vitamin C	++	++	++	0	0	++	0

++: Marked effect +: Moderate effect o: No effect

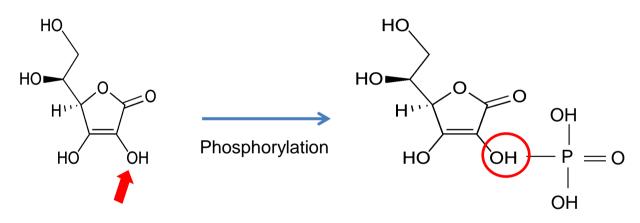
Extrusion process of a dry pet food



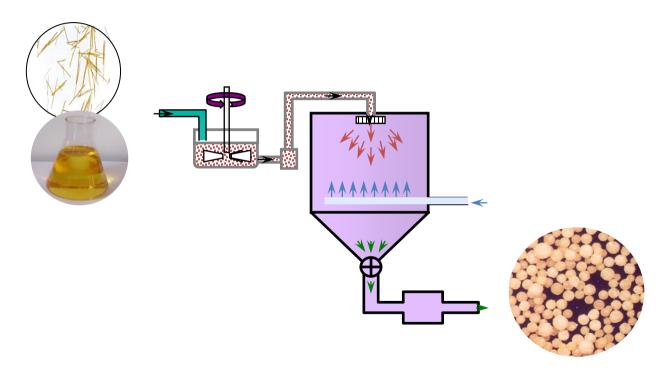
Vitamin product forms are developed to address:


- Stability
- Handling

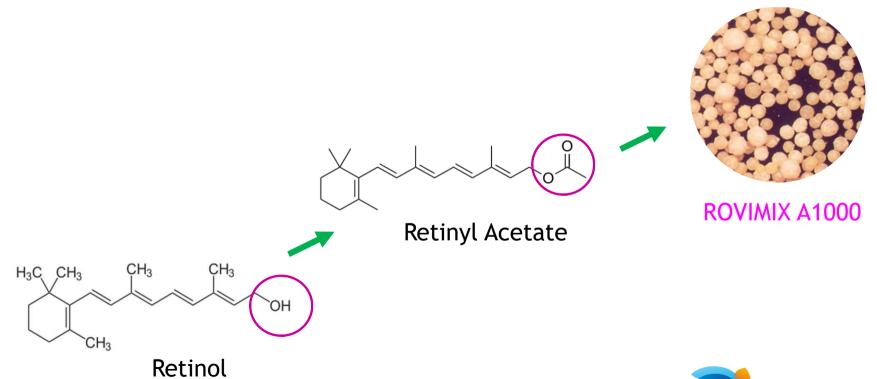
Other needs



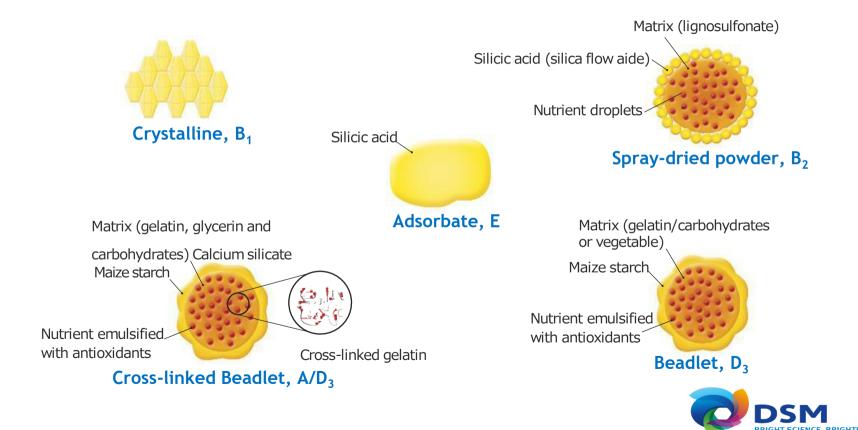
Chemical Modification - Phosphorylation


Ascorbic acid

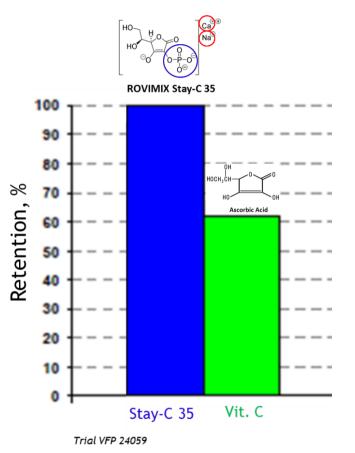
Ascorbyl-2-Monophosphate



Physical Modification



Chemical & Physical Modifications



DSM BRIGHT SCIENCE. BRIGHTER LIVING.

Common Vitamin Product Forms

Stability of Different Vitamin C Forms During Extrusion

Stability of Different Vitamin K₃ Forms During Extrusion

Table 1. Effects of sources and formulations of vitamin K_3 and extrusion temperature on its stability.

	Sour	ce (A)	Fo	ormulation (B)	Temper	ature (C)					p-Val	ues		
	MSB	MNB	Cr	Mic-c	Mic-s	LT	HT	SEM	A	В	С	$\mathbf{A} \times \mathbf{B}$	$\mathbf{A} \times \mathbf{C}$	$\mathbf{B} \times \mathbf{C}$	$\mathbf{A} \times \mathbf{B} \times \mathbf{C}$
Sample size (n) VK ₃ recovery (%)	54 64.67 ^B	54 72.74 ^A	36 74.16 ^a	36 65.25 ^b	36 66.72 ^b	54 70.88 α	54 66.54 β	0.81	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.307

A,B Means in a row, with different superscripts, are different (p < 0.05) under source. a,b Means in a row, with different superscripts, are different (p < 0.05) under temperature. MSB, menadione sodium bisulfite; MNB, menadione nicotinamide bisulfite; Cr, crystal; Mic-c, micro-capsule; Mic-s, micro-sphere; LT, low temperature (100 °C); HT, high temperature 7(135 °C); VK₃, vitamin K₃; SEM, Standard Error of Mean; A, Source; B, Formulation; C, Temperature.

MSB: menadione sodium bisulfite

- Cr: Crystal
- Mic-c: Micro-capsule (stearic acid & glycerate)
- Mic-s: Micro-sphere (carboxymethyl cellulose & ethyl cellulose)

MNB: Menadione nicotinamide bisulfite

- Cr: Crystal
- Mic-c: Micro-capsule (stearic acid & glycerate)
- Mic-s: Micro-sphere (carboxymethyl cellulose & ethyl cellulose)

LT: Low temperature (100°C) HT: High temperature (135°C)

Stability of Different Vitamin K₃ Forms

Unstable

Menadione Sodium Bisulfite 50% Menadione

Menadione Sodium Bisulfite Complex 33% Menadione

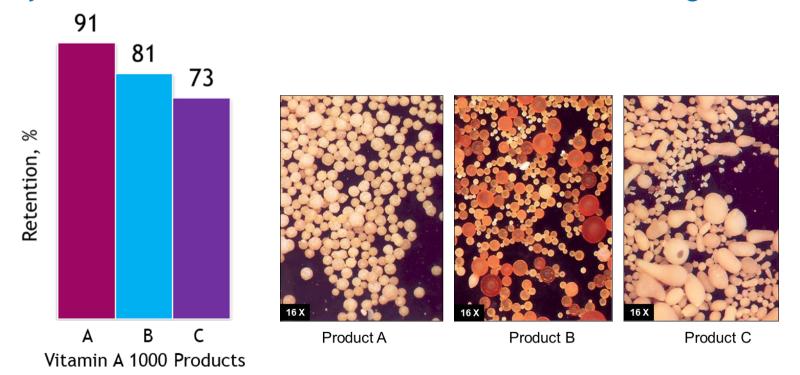
Menadione Pyrimidinol Bisulfate 45% Menadione

Menadione Nicotinamide Bisulfite 46% Menadione

Stable

Stability of Fat Microencapsulated Vitamins during Extrusion

Table 5. Effects of extruded temperature (Temp.) and vitamin forms (non-microencapsulated or microencapsulated) on the percentage of vitamins in diets (Experiment 1) ¹.


Form	Temp.	VA	VD_3	VE	VK_3	VB_1	VB_2	VB_3	VB_5	VB_6
	100 °C	46.34	73.94	47.34	7.17	94.91	98.71	102.59	99.19	74.35
NM	140 °C	34.75	53.14	42.23	6.12	79.24	87.77	89.75	84.32	78.12
	180 °C	30.76	40.26	45.17	11.64	78.31	90.16	87.18	85.51	71.82
	100 °C	56.41	75.73	49.17	48.04	100.71	105.16	104.81	100.83	101.88
M	140 °C	40.25	56.86	43.09	35.20	83.81	91.39	90.59	87.47	92.46
	180 °C	41.80	60.74	46.41	38.55	83.60	90.76	90.20	84.41	89.25
SEM		0.74	3.40	1.10	1.81	0.68	1.28	1.14	1.75	3.16
Main effects										
Form	NM	37.28	55.78	44.91	8.31	84.15 ^y	92.21 ^y	93.18 ^y	89.67	74.76 ^y
	M	46.15	64.44	46.22	40.60	89.37 ^x	95.77 ×	95.20 ^x	90.90	94.53 ^x
Temp.	100 °C	51.37	74.83	48.26 a	27.60	97.81 ^a	101.93 ^a	103.70 ^a	100.00 a	88.11
	140 °C	37.50	55.00	42.66 b	20.66	81.52 b	90.46 ^b	90.17 ^b	85.90 ^b	85.29
	180 °C	36.28	50.50	45.79 a	25.10	80.96 b	89.58 b	88.69 b	84.96 b	80.54
<i>p</i> -value										
Form		< 0.001	0.015	0.154	< 0.001	< 0.001	0.002	0.038	0.397	< 0.001
Temp.		< 0.001	< 0.001	< 0.001	0.002	< 0.001	< 0.001	< 0.001	< 0.001	0.069
Form \times temp.		< 0.001	0.035	0.905	0.001	0.667	0.09	0.110	0.478	0.110
Significant p-valu										
NM 100 °C vs. N		< 0.001	-	-	< 0.001	-	-	-	-	-
NM 140 °C vs. N		< 0.001	-	-	< 0.001	-	-	-	-	-
NM 180 °C vs. N		< 0.001	< 0.001	-	< 0.001	-	-	-	-	-
NM 100 °C vs. N		< 0.001	< 0.001	-	-	-	-	-	-	-
NM. 100 °C vs. N		< 0.001	< 0.001	-	-	-	-	-	-	-
NM 140 °C vs. N		< 0.001	0.013	-	0.039	-	-	-	-	-
M 100 °C vs. M 1		< 0.001	0.011	-	< 0.001	-	-	-	-	-
M 100 °C vs. M.		< 0.001	0.037	-	< 0.001	-	-	-	-	-
M 140 °C vs. M 1	180 °C	-	-	-		-	-	-	-	-

 $^{^1}$ Main effects are shown for responses in which the interaction was not significant, whereas contrasts are shown where a significant interaction was detected. VA; vitamin A, VD₃; vitamin D₃, VE; vitamin E, VK₃; vitamin K₃, VB₁; vitamin B₁, VB₂; vitamin B₂, VB₃; vitamin B₃, VB₅; vitamin B₅, VB₆; vitamin B₆. x,y Means within a column that lack a common superscript differ (p < 0.05). a,b,c Means within a column that lack a common superscript differ (p < 0.05). NM, non-microencapsulated; M, microencapsulated. The changes in vitamin concentration during extrusion are presented in Table S1.

M: Vitamins microencapsulated with hydrogenated fat

Stability of Vitamin A from Different Manufacturers during Extrusion

Source: Trial vfp201070

Stability of Vitamins in Different Pet Food during Extrusion

Table 3.3: The effects of experimental protein level (low, medium and high) on vitamin retention exiting the extruder, as-is basis.

			P				
Item	Unit	Target*	Low(24)	Medium (27)	High(34)	SEM	P=
Vitamin A	IU/kg	241,014.0	206,249.0 ^b	219,184.0a	225,352.0a	3,791.4	0.020
Vitamin D ₃	IU/kg	10,205.0	7,836.0	8,204.0	8,377.0	215.8	0.260
Vitamin E	IU/kg	1,269.0	755.0°	801.0 ^b	893.0a	32.0	0.050
Folic Acid	mg/kg	2.3	1.4 ^b	1.6 ^b	1.8a	0.05	0.004
Thiamine	mg/kg	28.2	22.5	23.3	23.6	0.36	0.200

^{ab} Means in a row with unlike superscripts differ (P < 0.05).

^{*}Target was not evaluated in statistical analysis and is provided as a form of reference for the target amount intended based on vitamins in premix.

Mooney, 2010

Stability of Vitamins in Different Pet Food during Drying

Table 3.4: The effects of experimental crude protein level on vitamin retention as kibble exits the drier.

	Protein Level (%)									
Item	Unit	Target*	Low(24) Medium(2	7) High(3	34) SEM	P=			
Vitamin A	IU/kg	241,014.0	173,022.0	173,234.0	171,069.0	3,521.9	0.80			
Vitamin D ₃	IU/kg	10,205.3	6,945.7b	7,472.6.0 ^b	9,047.1ª	458.1	0.006			
Vitamin E	IU/kg	1,269.1	894.7 ^b	884.8 ^b	1,102.3ª	26.6	0.001			
Folic Acid	mg/kg	2.3	1.8 ^b	1.9 ^b	2.2ª	0.03	0.0006			
Thiamine	mg/kg	28.2	25.5	25.1	26.6	0.6	0.14			

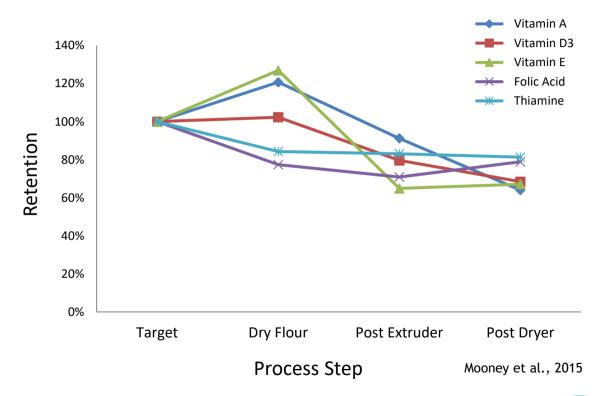
^{ab} Means in a row with unlike superscripts differ (P < 0.05).

^{*}Target was not evaluated in statistical analysis and is provided as a form of reference for the target amount intended based on vitamins in premix.

Mooney, 2010

Stability of Vitamins at Different Temperature during Extrusion

 Table 7
 Effect of extrusion temperature on different vitamins stability.


Fat-Soluble Vitamins	91–95°C	141–145°C	% Loss from 95 to 145°C
A, beadlet	90	62	25.2
D, beadlet	96	86	9.6
E, acetate	95	81	13.3
Water-Soluble Vitamins			
Thiamine HCL	90	50	36
Riboflavin	98	91	7.1
B6	93	73	18.6
B12	97	86	10.67
Pantothenic acid	94	75	17.86
Folic Acid	93	64	26.97
Biotin	93	63	27.9
Niacin	92	64	25.7
Vitamin C	57	5	91.22

Source: BASF Documentation DC 0002.

Riaz et al, 2009

Stability of Vitamin A, D₃, E, Folate, and B₁ during Extrusion

Effect of Extrusion Process Conditions on Vitamin Stability

Table 2 Extrusion parameters that increase vitamin destruction.

↑	Barrel and mass temperature
↑	Screw speed
↑	Specific energy input
↓	Feed moisture
↓	Die diameter
<u>↑</u>	Throughput

Source: Killeit (1994).

Vitamin Retention during Extrusion

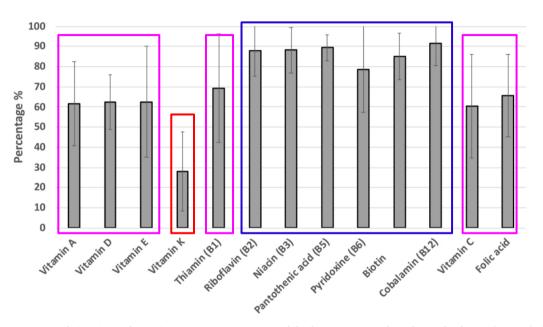


Fig. 1. Average retention of vitamins under various extrusion processes and food matrixes. Based on the work of Mustakas et al. (1964), 1970; Beetner et al. (1974), 1976; Lee et al. (1978); Maga and Sizer (1978); Lorenz et al. (1980); Bjorck and Asp (1983); Killeit and Wiedmann (1984); Andersson and Hedlund (1990); Guzman-Tello and Cheftel (1990); Killeit (1994); Andersson and Sunderland (2002); Cha et al. (2003); Athar et al. (2006); Plunkett and Ainsworth (2007); Ilo and Berghofer (2008); Tran et al. (2008); Riaz et al. (2009); Boyaci et al. (2012); Emin et al. (2012); Ying et al. (2015); Alam et al. (2016); Bajaj and Singhal (2019); Yang et al. (2020).

Summary

- Vitamins are essential for dogs and cats.
- Vitamins are a group of organic compounds, and they are prone to the process and storage losses.
- To maximize vitamin retention during extrusion, proper forms and high quality of vitamin products should be used.
- Reducing (Thermal Energy + Mechanic Energy) x Time helps to improve vitamin retention during process of extruded dry pet food.

Thank You

BRIGHT SCIENCE. BRIDGHTER LIVING.TM